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A pseudomacrocrack representing the usual crack in a composite material 
or in an inhomogeneous body is considered. The crack edges are pulled 
together by the non-disintegrated elements of the structure, and 
interact linearly. It is shown that in this case normal extension is 
sufficient for a non-zero value of the stress intensity factor Air to 
occur at its tip. The problem is reduced to the Prandtl integro- 
differential vector equation for which an analytic solution is obtained. 
A relation is derived connecting the stress intensity factors A,, KII. 
with the stiffness of the joints between the edges, the elastic 
characteristics of the surrounding material and the external loads. 

A classical example of a peseudomacrocrack is the macrocrack in a composite material 
consisting of a brittle ceramic matrix and tensile fibres pulling its edges together and 
preventing it from enlarging /I., 21. A model of a pseudomacrocrack in an elastic, linearly 
anisotropic body in conditions of plane deformation was discussed in /3/. Here the relation 
between the stresses transmitted from the edge to the edge vnr and the opening of the edges 
WI, was assumed to be linear: 

% (1) = kljq (x) (0.1) 

where k;j is a symmetric tensor. When the tensor kit is diagonal and the plane of elastic 
symmetry coincides with the plane of the pseudomacrocrack, the problem splits into two 
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independent problems of symmetric loading and skew-symmetric shear. 
parameter was introduced: 

The following coupling 

whose dimension is the reciprocal of length (the quantity h-1 is identical in its order 
of magnitude with the characteristic dimension of the material structure) such, that from 
condition ?.l>l (1 is the length of the pseudomacrocrack) it follows that the stress 
intensity factor K, at the tip of the pseudomacrocrack is independent /3/: 
In formula (0.2) 

A,= a;m. 
VlI? Asa represent the technical elastic constants and pl,pI are the unequal 

roots of the characteristic Lekhnitskii equation /4/ with a positive imaginary part. An 
analogous problem for an isotropic body was discussed in /5/ for the range of values bZN1. 

When the orientation of the pseudomacrocrack in an anisotropic medium is arbitrary, the 
problem becomes much more complicated. In particular, even the application of normal tensile 
stresses only results, in addition to the quantity X, acting at the tip of the pseudomacro- 
crack, in the appearance of a non-zero value of the quantity KII. A semi-infinite 
macrocrack is discussed below, 

pseudo- 
and the relation between the applied forces and the stress 

intensity factors at its tip is determined. 

1. Permutation of the probbm, and the resoZving equation. Let an infinite anisotropic 
space be weakened by a semi-infinite pseudomacrocrack lying on the positive part of the x- 
axis and let it have an elastic plane of symmetry normal to the z-axis of the (r, y,z) system 
of coordinates. Then the generalized plane problem will split into two independent problems, 
namely that of plane deformation and that of longitudinal shear /4/. We shall limit ourselves 
to the plane deformation case (E, = 0) as being the most interesting one from the practical 
point of view. The stresses o,,u,,a,, and displacements u, V are expressed, in the case of 
different complex roots pI,(r=i,2) of the characteristic equation, by two complex Lekhnitskii 
potentials (Pm 47 are complex parameters /4/ 

The following homogeneous stress field is specified at infinity: 

crOD = 0, aym = pm, ax", = 4_ (1.2) 

A relation connecting the stresses and the jump in displacements of the type (0.1) are 
given at the edges of the pseudomacrocrack: 

a,* (2) = k, [V (x)1, CJ& (2) = k, lu @)I, .z > 0 (1.3) 

Generalization to more general type couplings encounters no difficulties. The functions 
cp,(z,) which are analytic everywhere in the complex z, plane, except at positive values of 
the real axis, can be written in the form of Cauchy-type integrals 

Here and henceforth the subscripts r and t take the values 1 and 2, alternating with 
each other. If r = 1, then t=2 and vice versa. 

The constants r7 in (1.4) determine the field (1.2) at infinity, and f b) and .? (4 
are positive functions to be determined. 

Using (1.1) and (1.4) we obtain the opening of the crack EL1 (x)1 and Iv (z)l. In the 
most general case we have 

lu (41 = %& (4 + 4 (4 b (41 = az,g (4 + 4 (4 (1.5) 

Using the properties of the complex parameters PI9 q7 /6/, we 
relations hold: 

(1.6) 

can show that the following 



al3 = --asl, all > 0, a,, > 0, det la,jl > 0 

Thus the functions f(X) and g(z) are proportional to the displacement 
therefore vanish as z-+ +0: 

g (0) = 0, f (0) = 0 

Taking relations (1.8) into account, we can write the derivatives of the 

potentials q,,(z) in the form 

+m P*f’w+g’w dl wz)=r,+& s 
0 

P’t-Pr 5-z 

while the stress distribution on the x-axis is given by the formulas 

us* (x) + ic& (x) = p.. + iq, + + +( ” (t’,‘_iz’ (‘) dE 
0 
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(1.7) 

jumps and should 

(1.8) 
complex 

w 

(1.10) 

while the integral in (1.10) is regarded, for positive values of I, as its principal Cauchy 
value. 

Using relations 
we obtain a singular 

(1.6) and (1.10) to satisfy boundary conditions (1.3) of the problem, 
integrodifferential equation for the unknown vector function f(x): 

+= f'(E) hf(s)--f 5 -dE=P,; 
0 

(1.11) 

Here the components of the matrix A can be found in terms of the known quantities aijr 
using relations (1.3) and (1.6) 

AI1 = klall, All = km,, As1 = k,a,,, A,, = k,a,, (1.12) 

Since k, > 0, k, > 0, inequalities (1.7) yield 

det [Ai,1 = k,k, det [aij 1 > 0 (1.13) 

Using the properties of Cauchy-type integrals near the ends of the line of integration 
/7/ and applying them to Eq.tl.11) with boundary conditions (1.8), we obtain the asymptotic 
form of the vector function f(z), f’(x) near the zero 

f(s)+2Nfi; f'(z)+. x+0 (1.14) 

where the vector Nis not known, has to be determined, and is connected with the vector K of 
the stress intensity factors by the formula 

K= (1.15) 

The vector function f(z) is constant at infinity and is expressed in terms of the 
known vector of external stresses and a matrix inverse to A: 

f(oo) = A-‘P, (1.16) 

2. Solution of the integro&fferentiaZ equation. The singular Eq.(l.ll) belongs to the 
class of integrodifferential Prandtl equations and arises in many problems of mechanics and 
mathematical physics. The equation has been studied in sufficient detail for an unknown 
scalar function (e.g. /8/I and its simple solution was obtained in /3/. Below we construct 
the closed solution of the Prandtl vector Eq.(l.ll). 

We introduce the vector function f, (e) according to the rule 

(2.1) 

and rewrite Eq.cl.1) in the form 
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(2.2) 

where b (51 is an unknown vector function defined on the ray $,<O . 
Let us find the complex vector functions 

analytic in the upper half-plane (Im(W)> 0). Integrating the second equation of (2.3) by 
parts, we obtain the relation connecting QO+ with Q1+: 

Qr*(o) = A-'P, - &Q,+(o) (2.4) 

Using the Erdelyi lemma /9/, which is an analoque of the Watson lemma for the Fourier 
integrals, and taking into account the behaviour of the vector function f,(z), f"' (z) at 
the zero (see (1.14) and (2.lf), we can determine the asymptotic be,haviour of the vector 
function Qo+, Q,' at infinity: 

Applying to Eq.(2.2) a Fourier transformation in the coordinate 5, and taking into 
account relations (2.3), we obtain 

AQO' (r) -+ i sign (r) Qc (z) = B- (r) 

where 7 is the affix of the point on the real axis of the complex o plane and B-(z) is 
the limiting value of the vector function B-t@), which is a Fourier transform of the 
function b(E) analytic in the lower half-plane w. Using (2.41, we can transform this 
equation into the problem of conjugation for a piecewise analytic vector function on the real 
axis r (E is the unit matrix) 

(A -t_ E 1 z 1 ) Q1* (z) = -irB- (z) -L P, (2.6) 

Let us consider the characteristic equation /lO/ of the matrix A: 

det (E'G - A) = (r - zl)(r - rz) = 0 (2.7) 

The constants *1* 78 will be called its characteristic numbers. They are easily found 
and they satisfy the inequalities (which follow from !1.12), (1.13)) 

rrra = det (Aif) > 0, ~1 f rz = (An + A& > 0 

and ensure, as can be shown, a non-zero value of the determinant of the matrix accompanying 
the vector function Qr' in (2.6) for any value of r. 

Using this property, we shall write the matrixcoefficient accompanying the vector 
function Q1*(z) in (2.6), in the form 

A + E 1 T 1 = [Z- @)1-l Z' (r) (2.8) 

where the square matrices Z+(o),Z-(o) have, as their components, functions that are analytic, 
respectively, in the upper and lower half-plane of ce except, perhaps, at the point at 
infinity. 

Below we shall assume that r, ;f: z2 (the non-equality of characteristic numbers). It 
can be shown that the matrices 

z+(o) = I+(w) (A + oE)x, [Z- (0)1-r = (A i wE]'hI- (0) (2.9) 

- In A)((rE TA)-I-((zE ir: A)-‘) dr] 
0 

defined in the whole complex plane w with a cut along the negative part of the real 
axis possess the required properties. 

In proving this fact we use, essentially, the properties of an analytic function of a 
matrix argument /lo/. We know /IO/ that for any analytic function s(c) and for any square 
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matrix A of dimensions 2 X 2 with unequal characteristic numbers s,, a,, we can construct 
a function 6 (A) of matrix argument according to the rule 

(2.10) 

In particular, the following relations hold: 

I** = rlln (%a) - rlla (Tl) * + la (M-la (z*) * (2.11) 
‘TI-- ?a 71- m& 

(Tl+ Q f r) E - 11 
m*w=~ (T,fZ)(BCt7:T) 

The matrix functions (2.9) which factorize the matrix coefficient in Eq.(2.6), represent 
a generalization of factorizing functions of the corresponding one-dimensional probfen 
discussed in 131. 

Having used the properties of the matrix functions, we can obtain the following matrix 
inversion formulas for (2.9): 

[Z+ (o)~-' = (A + a~]-% I-(W), Z-(w) = I+ (0) (A + oE)-x (2.12) 

Let us rewrite relation (2.6) using the matrices Z +, Z- satisfying the matrix Eq.(2.8), 
in the form 

Z+ (2) Q1+ (T) = Z- (T) (Pm - tcB- (z)) 

The left-hand side of this equation represents the limit value of the vector function 
analytic in the upper half-plane of 0 (except, perhaps, at the point at infinity), and the 
right-hand side is the limit value of the vector function analytic in the lower half-plane 
of 0. Therefore, according to the generalized Liouville theorem, the left and right sides 
of this equation represent a single vector function analytic in the whole complex plane w 
except at the point at infinity. The vector function is a polynomial whose degree is 
determined by the behaviour of the left (or rightlyhand side at infinity. Taking into 
account the asymptotic properties of the matrix-function Z(w): 

Z+ (0) + Efi exp (-in/b), co + m (2.13) 
and the asymptotic form (2.5), we obtain 

Q,’ (co) = IZ+ fw)l-’ C, (2.14) 
The constant vector C, can be expressed in terms of the unknown vector N, from the 

condition that the asymptotic expressions (2.5) and (2.14) are identical: 

C,=NJ.G=K/')/Z 
Thus we obtain, apart from an unknown vector K, an explicit expression for the vector 

function Q1'(o) and hence, in accordance with (2.4), the vector function QO+(o): 

Q; (co) = IZ+ (~)l-~K/1/2, Qa+ (to) = iw-’ (Q, (co) - A-‘P,) (2.15) 
The vector functions f, (f), f*'(E) are recovered from relations (2.15) using inverse 

Fourier transformations of (2.3): 

The relation connecting the force vector P, (1.111 with the stress intensity factors 
vector K (1.15) follows from the condition that the vector function Q;(o) (2.151 has no 
pole at zero. Since it follows from (2.12) and (2.15) that 

[Z" (O)]-' = A-x, Q1 (0) = A-SK/I/s 

we obtain the required formula 

K = 1/&-sP, (2.16) 

and the matrix A-3 is expressed in terms of E, A and the characteristic numbers 7~ in 
accordance with 12.10): 

A-'% = ~,I~~,~~~ K_ _ 1 a _ 
d%-l-1/?; r/G 

(2.17) 

It is clear that expression (2.161 holds for the values of p-, Q-, which yield a 
negative value of the stress intensity factor ICI. 

non- 

We have two asymptotic forms of the stress near the tip of the semi-infinite pseudomacrocrack, 
namely the near one (at the distances r<1-'), and the far one (at r>k-?. The near asymp- 
totic form of the stress-strain state is identical with the usual asymptotic form typical for a 
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crack in the anisotropic body discussed here, with the stress intensity factors K1 and KII. 
The far asymptotic form is identical with the dislocation field possessing the components of 
the Burgers vector hg (-1 + a,$ (CO), a,,g (~1 + aazf (m)) (the values j(m) and- R(W) 
are determined by relations (1.161) and placed in an anisotropic medium. The stresses in 
this case decay as -r-‘. 

In the case when elastic symmetry planes normal to coordinate axes exist, the non-diagonal 
terms of the matrices sij and i\$j vanish, and the problem splits into two independent 
problems, of normal separation and shear displacenent respectively. In this case we obtain 
the following expressions for the stress intensity factors obtained from (2.16) and (2.17): 

which is identical with the result obtained earlier in /3/. 
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